Copied to
clipboard

G = C32×Dic9order 324 = 22·34

Direct product of C32 and Dic9

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C32×Dic9, C33.6Dic3, C93(C3×C12), (C32×C9)⋊5C4, (C3×C9)⋊14C12, C2.(C32×D9), C18.4(C3×C6), C6.10(C3×D9), (C3×C6).11D9, (C3×C18).26C6, C6.1(S3×C32), (C32×C18).3C2, (C32×C6).15S3, C3.1(C32×Dic3), C32.15(C3×Dic3), (C3×C6).33(C3×S3), SmallGroup(324,90)

Series: Derived Chief Lower central Upper central

C1C9 — C32×Dic9
C1C3C9C18C3×C18C32×C18 — C32×Dic9
C9 — C32×Dic9
C1C3×C6

Generators and relations for C32×Dic9
 G = < a,b,c,d | a3=b3=c18=1, d2=c9, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 178 in 86 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C3, C3, C3, C4, C6, C6, C6, C9, C9, C32, C32, C32, Dic3, C12, C18, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, C33, Dic9, C3×Dic3, C3×C12, C3×C18, C3×C18, C32×C6, C32×C9, C3×Dic9, C32×Dic3, C32×C18, C32×Dic9
Quotients: C1, C2, C3, C4, S3, C6, C32, Dic3, C12, D9, C3×S3, C3×C6, Dic9, C3×Dic3, C3×C12, C3×D9, S3×C32, C3×Dic9, C32×Dic3, C32×D9, C32×Dic9

Smallest permutation representation of C32×Dic9
On 108 points
Generators in S108
(1 45 21)(2 46 22)(3 47 23)(4 48 24)(5 49 25)(6 50 26)(7 51 27)(8 52 28)(9 53 29)(10 54 30)(11 37 31)(12 38 32)(13 39 33)(14 40 34)(15 41 35)(16 42 36)(17 43 19)(18 44 20)(55 101 89)(56 102 90)(57 103 73)(58 104 74)(59 105 75)(60 106 76)(61 107 77)(62 108 78)(63 91 79)(64 92 80)(65 93 81)(66 94 82)(67 95 83)(68 96 84)(69 97 85)(70 98 86)(71 99 87)(72 100 88)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 61 67)(56 62 68)(57 63 69)(58 64 70)(59 65 71)(60 66 72)(73 79 85)(74 80 86)(75 81 87)(76 82 88)(77 83 89)(78 84 90)(91 97 103)(92 98 104)(93 99 105)(94 100 106)(95 101 107)(96 102 108)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 72 10 63)(2 71 11 62)(3 70 12 61)(4 69 13 60)(5 68 14 59)(6 67 15 58)(7 66 16 57)(8 65 17 56)(9 64 18 55)(19 90 28 81)(20 89 29 80)(21 88 30 79)(22 87 31 78)(23 86 32 77)(24 85 33 76)(25 84 34 75)(26 83 35 74)(27 82 36 73)(37 108 46 99)(38 107 47 98)(39 106 48 97)(40 105 49 96)(41 104 50 95)(42 103 51 94)(43 102 52 93)(44 101 53 92)(45 100 54 91)

G:=sub<Sym(108)| (1,45,21)(2,46,22)(3,47,23)(4,48,24)(5,49,25)(6,50,26)(7,51,27)(8,52,28)(9,53,29)(10,54,30)(11,37,31)(12,38,32)(13,39,33)(14,40,34)(15,41,35)(16,42,36)(17,43,19)(18,44,20)(55,101,89)(56,102,90)(57,103,73)(58,104,74)(59,105,75)(60,106,76)(61,107,77)(62,108,78)(63,91,79)(64,92,80)(65,93,81)(66,94,82)(67,95,83)(68,96,84)(69,97,85)(70,98,86)(71,99,87)(72,100,88), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,72,10,63)(2,71,11,62)(3,70,12,61)(4,69,13,60)(5,68,14,59)(6,67,15,58)(7,66,16,57)(8,65,17,56)(9,64,18,55)(19,90,28,81)(20,89,29,80)(21,88,30,79)(22,87,31,78)(23,86,32,77)(24,85,33,76)(25,84,34,75)(26,83,35,74)(27,82,36,73)(37,108,46,99)(38,107,47,98)(39,106,48,97)(40,105,49,96)(41,104,50,95)(42,103,51,94)(43,102,52,93)(44,101,53,92)(45,100,54,91)>;

G:=Group( (1,45,21)(2,46,22)(3,47,23)(4,48,24)(5,49,25)(6,50,26)(7,51,27)(8,52,28)(9,53,29)(10,54,30)(11,37,31)(12,38,32)(13,39,33)(14,40,34)(15,41,35)(16,42,36)(17,43,19)(18,44,20)(55,101,89)(56,102,90)(57,103,73)(58,104,74)(59,105,75)(60,106,76)(61,107,77)(62,108,78)(63,91,79)(64,92,80)(65,93,81)(66,94,82)(67,95,83)(68,96,84)(69,97,85)(70,98,86)(71,99,87)(72,100,88), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,72,10,63)(2,71,11,62)(3,70,12,61)(4,69,13,60)(5,68,14,59)(6,67,15,58)(7,66,16,57)(8,65,17,56)(9,64,18,55)(19,90,28,81)(20,89,29,80)(21,88,30,79)(22,87,31,78)(23,86,32,77)(24,85,33,76)(25,84,34,75)(26,83,35,74)(27,82,36,73)(37,108,46,99)(38,107,47,98)(39,106,48,97)(40,105,49,96)(41,104,50,95)(42,103,51,94)(43,102,52,93)(44,101,53,92)(45,100,54,91) );

G=PermutationGroup([[(1,45,21),(2,46,22),(3,47,23),(4,48,24),(5,49,25),(6,50,26),(7,51,27),(8,52,28),(9,53,29),(10,54,30),(11,37,31),(12,38,32),(13,39,33),(14,40,34),(15,41,35),(16,42,36),(17,43,19),(18,44,20),(55,101,89),(56,102,90),(57,103,73),(58,104,74),(59,105,75),(60,106,76),(61,107,77),(62,108,78),(63,91,79),(64,92,80),(65,93,81),(66,94,82),(67,95,83),(68,96,84),(69,97,85),(70,98,86),(71,99,87),(72,100,88)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,61,67),(56,62,68),(57,63,69),(58,64,70),(59,65,71),(60,66,72),(73,79,85),(74,80,86),(75,81,87),(76,82,88),(77,83,89),(78,84,90),(91,97,103),(92,98,104),(93,99,105),(94,100,106),(95,101,107),(96,102,108)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,72,10,63),(2,71,11,62),(3,70,12,61),(4,69,13,60),(5,68,14,59),(6,67,15,58),(7,66,16,57),(8,65,17,56),(9,64,18,55),(19,90,28,81),(20,89,29,80),(21,88,30,79),(22,87,31,78),(23,86,32,77),(24,85,33,76),(25,84,34,75),(26,83,35,74),(27,82,36,73),(37,108,46,99),(38,107,47,98),(39,106,48,97),(40,105,49,96),(41,104,50,95),(42,103,51,94),(43,102,52,93),(44,101,53,92),(45,100,54,91)]])

108 conjugacy classes

class 1  2 3A···3H3I···3Q4A4B6A···6H6I···6Q9A···9AA12A···12P18A···18AA
order123···33···3446···66···69···912···1218···18
size111···12···2991···12···22···29···92···2

108 irreducible representations

dim11111122222222
type+++-+-
imageC1C2C3C4C6C12S3Dic3D9C3×S3Dic9C3×Dic3C3×D9C3×Dic9
kernelC32×Dic9C32×C18C3×Dic9C32×C9C3×C18C3×C9C32×C6C33C3×C6C3×C6C32C32C6C3
# reps11828161138382424

Matrix representation of C32×Dic9 in GL5(𝔽37)

10000
010000
001000
00010
00001
,
260000
01000
00100
000260
000026
,
360000
00100
0363600
000120
0002034
,
310000
01100
003600
000259
0001712

G:=sub<GL(5,GF(37))| [1,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,1,0,0,0,0,0,1],[26,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,26,0,0,0,0,0,26],[36,0,0,0,0,0,0,36,0,0,0,1,36,0,0,0,0,0,12,20,0,0,0,0,34],[31,0,0,0,0,0,1,0,0,0,0,1,36,0,0,0,0,0,25,17,0,0,0,9,12] >;

C32×Dic9 in GAP, Magma, Sage, TeX

C_3^2\times {\rm Dic}_9
% in TeX

G:=Group("C3^2xDic9");
// GroupNames label

G:=SmallGroup(324,90);
// by ID

G=gap.SmallGroup(324,90);
# by ID

G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,5404,208,7781]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^18=1,d^2=c^9,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽